
Paper Number: AIAA-2002-1761

FIELD-PROGRAMMABLE GATE ARRAY COMPUTER IN STRUCTURAL ANALYSIS: AN INITIAL
EXPLORATION

Robert C. Singleterry Jr., NASA Langley Research Center, Hampton, Virginia 1

Jaroslaw Sobieszczanski-Sobieski, AIAA F, NASA Langley Research Center, Hampton, Virginia
Samuel Brown, Star Bridge Systems Inc., Midvale Utah

Abstract

This paper reports on an initial assessment of using
a Field-Programmable Gate Array (FPGA)

computational device as a new tool for solving
structural mechanics problems. A FPGA is an

assemblage of binary gates arranged in logical blocks
that are interconnected via software in a manner

dependent on the algorithm being implemented and can
be reprogrammed thousands of times per second. In

effect, this creates a computer specialized for the
problem that automatically exploits all the potential for

parallel computing intrinsic in an algorithm. This
inherent parallelism is the most important feature of the
FPGA computational environment. It is therefore

important that if a problem offers a choice of different

solution algorithms, an algorithm of a higher degree of
inherent parallelism should be selected.

It is found that in structural analysis, an "analog
computer" style of programming, which solves
problems by direct simulation of the terms in the

governing differential equations, yields a more
favorable solution algorithm than current solution

methods. This style of programming is facilitated by a
"drag-and-drop" graphic programming language that is

supplied with the particular type of FPGA computer
reported in this paper. Simple examples in structural

dynamics and statics illustrate the solution approach
used. The FPGA system also allows linear scalability

in computing capability. As the problem grows, the
number of FPGA chips can be increased with no loss of

computing efficiency due to data flow or algorithmic
latency that occurs when a single problem is distributed

among many conventional processors that operate in
parallel.

This initial assessment finds the FPGA hardware

and software to be in their infancy in regard to the user

conveniences; however, they have enormous potential
for shrinking the elapsed time of structural analysis
solutions if programmed with algorithms that exhibit

inherent parallelism and linear scalability. This
potential warrants further development of FPGA-

tailored algorithms for structural analysis.

1. Introduction

As in other areas of applied mechanics, structural
analysis poses a persistent demand for faster

computing. This is particularly true in applications
involving nonlinear behavior and in design optimization

because of the repetitive analysis. Until recently, the
computer hardware technology has responded to this

demand via a two-prong development of faster
processors and concurrent processing with an

increasing number of processors packaged either in a
single machine or distributed in a network.

The Field Programmable Gate Array (FPGA) is a

relatively new addition to the above technology of
Massively Concurrent and Distributed Processing.
Relatively few engineers and scientists have had an

opportunity to explore the FPGA computers. This

paper reports on an initial assessment of the utility of
the FPGA machine and its graphic programming

language illustrated by a few simple examples in

structures and dynamics. A variety of commercially
available FPGA systems now exist. They are supplied

either as separate boards or as complete, turnkey
systems. The information reported herein was obtained

at the NASA Langley Research Center by using one
such turnkey system containing 20 FPGA's called
HAL-30 Hypercomputer TM (Reference [3]),

programmed with a graphic language VIVA ®

(Reference [2]), both from Star Bridge Systems ®. The

assessment includes a simplified description of the
salient features that distinguish the FPGA computer

from single or multiple processor computers. The
current merits and demerits of the FPGA computer and
its future potential are discussed.

2. Conventional CPU vs FPGA

The kernel of most current computer architectures
is the general purpose Central Processing Unit (CPU),

programmed individually or in networked groups. The
CPU itself consists of a large number of gates that work
as on-off switches and are permanently wired in a

variety of fixed circuits that implement, in a binary-
logic framework, the whole gamut of functions needed

1Corresponding author: Robert C. Singleterry, Jr.; NASA Langley Research Center, MS 188B, Hampton VA 23681;
757-864-1437; r.c.singleterry @larc.nasa.gov

This paper is declared a work of the U.S. Government and is not subject to copyright protection in the United States

1

American Institute of Aeronautics and Astronautics



for its operation. At any particular time, only a small
fraction of the total number of gates may be gainfully

employed, while the idle gates consume power and
generate heat. For engineers, the ability to generate
floating-point results is essential; therefore, some CPUs

have multiple floating-point units. In a massively

parallel environment that employs many CPUs, the
number of floating-point results that can be generated
simultaneously is limited by the number of the CPUs,

the communication speed, and the memory capability,
all combined with the solution algorithm
characteristics.

In an FPGA, a command to execute a particular

function is interpreted by the resident operating system
to interconnect "by software" as many gates as

necessary to perform that particular function and only
that function. The particular interconnection scheme

exists only as long as the job executes and can be

reconfigured to execute other functions many times per
second. In effect, a "specialized CPU" is created for

the job at hand. It is reminiscent of using an UV light
source to burn-in the inter-gate conduits to implement a
particular logic circuit, an operation known as
programming by "firmware". However, the result of

this firmware programming is irreversible, while the

FPGA program can be changed by the user in the field -
- hence "Field" in FPGA.

If the algorithm being implemented offers an

opportunity to do M number of operations

simultaneously, then M specialized CPUs are being
created in the FPGA computer. In the extreme, the
specialized CPUs might all be different in terms of the

number of gates and their interconnection logic if the
functions to be executed are different. Some of these

specialized CPUs could operate simultaneously and

some could operate sequentially as required by the logic
of the algorithm being executed. Thus, the set of gates

available in an FPGA computer is viewed as a resource
for creating a computer tailored to the job at hand. In

principle, if the job is not large enough to use all the
gates available, another unrelated job might be executed
simultaneously. Also, the hardware executes the entire

algorithm at once unless a sequencing step is part of the
algorithm, e.g., when the algorithm involves iterations.

To illustrate the computational parallelism afforded

by a FPGA, consider the example of computing

a = b. c + d. A conventional CPU needs two steps for

this operation: first to calculate the product b. c and

then to perform the sum because the steps are logically

sequential. The FPGA potentially can complete both
operations in one step provided the gates are properly
configured. Furthermore, if the example is extended to

a = e. f + b. c + d, a FPGA still needs only one step

because it can engages more gates. This example can
be extended in this manner while holding the execution

to a single step until the number of gates employed

equals the number of gates supplied in the array. This
"inherently parallel" attribute allows all M operations to
be executed at the same time, so that the maximum M is

only a function of the size and number of FPGAs
available.

3. Graphic Programming of FPGA

To make the multitude of gates available to the
user without performing machine-language level

programming for each application, high-level languages
exist, such as, HANDEL-C TM (Reference [1 ]), and
VIVA ®(Reference [2]), the latter having been used as a

basis for this report.
The authors' experiences to date indicate that the

FPGA-based computers can benefit engineers in at least
two ways:

1. They exploit inherent parallelism in the algorithm
being executed, hence they have a potential to

radically reduce the computation elapsed time.

2. They may be programmed in an analog computer
style that bypasses the need to develop solution
algorithms to the equations that govern the
problem.

These two points are illustrated by an introduction to

the VIVA language using simple examples.
The VIVA language hides the tailoring of a

specialized CPU from the amorphous supply of gates
specifically for the job at hand under a veneer of a

graphic language that enables coding by drawing what
looks like a wiring diagram. In this regard, VIVA

extends to the FPGA machines the same approach that
languages such as MATLAB Simulink (Reference [4])

implemented on a conventional, single or multiple
processor computers.

The essence of the VIVA graphic program is
illustrated in Figure 1 by the simple example of
computing a2 for a given value of a.

VIVA has a library of processing tools available in
a display on right the margin of the screen. The tools
needed to execute the example problem are

1. Input a from the user, illustrated by a horn on the
left

2. Multiply (a * a), illustrated by the box with ×
3. Output a2 to the user, illustrated by the horn on the

right

These objects are dragged and dropped onto the main

screen area and the inputs and outputs are connected to
the multiply object. The resulting diagram is

"compilea_' into an executable code that can accept any
value of a as input. The entire diagram may be named,

saved, turned into another icon in the library of tools,
and displayed. In this manner, one can develop a

complex code by building blocks forming many
hierarchically related levels. These building blocks

2

American Institute of Aeronautics and Astronautics



workbestif thealgorithmcanbemaderecursivein
nature.

3.1 Equation Solution

Now consider two algebraic equations with two
unknowns y and z and six constants a, b, d, e, P, and M

ay + bz = Pdy +ez = M (1)

One may program a VIVA solution using Cramer's
rule:

Pe-Mb
y=

ae-db

Ma- Pd
Z-"

ae -db

(2)

and as in the previous example execute it in one step.
However, expansion of the system of simultaneous
equations to larger number of variables causes

nonlinear explosion in the number of terms and

operations that would quickly exhaust the FPGA

capacity and make the VIVA program exceedingly
complex. Therefore, a better method in VIVA is a

fixed-point iteration solution, as in Figure 2,
corresponding to

Yi = P- bzi-1
a

z i = M-dyi-1
e

(3)

Upon initialization, the system represented by the
diagram in Figure 2 converges to the fixed-point

(y=,Zoo) solution as the iterations are stepped through.

The need to iterate (with a rate of convergence that
depends on the properties of the matrix of coefficients)

is the penalty for the solution simplicity. The flow of

execution within one cycle is: all the "divide" operators
first, all the "multiply" operators next, followed by all
the "subtraction" operators.

3.2 Analog programmin_ style

The diagram in Figure 2 is strikingly similar to a

wiring diagram one would have developed for this
problem when using an analog computer. The

similarity is more than superficial. It implies a style of
programming based entirely on the now nearly
forgotten analog computer methods. In fact, for a case

of a spring-mass vibrating system with damping shown

in Figure 3, one may revert to an analog computer
diagram from a more than 30-year-old reference [5,
Figure 2-9] rendered in Figure 4 and derive from it the

VIVA diagram shown in Figure 5. The acceleration,

velocity, and translation as functions of time computed

by VIVA for an impulse force excitation are presented
in Figure 6 for a subcritical value of the damping

constant. Should the damping be set to a negative
value, a divergent behavior reminiscent of wing flutter
results.

3.3 Inclusion of non-linearitv

A primary benefit of the analog computer
programming style is that the handling of non-linearity

becomes almost trivial. For example, should the right
hand side of the first equation in Eq. (1) depend

nonlinearly on the solution for y, Eq. (1) becomes

ay + bz = P- ky 2 (4)
dy + ez = M

and the diagram in Figure 2 changes by the simple
addition of the "Two DOF NL term" object shown in

Figure 7. The numerical solution is obtained by
recording the output values ofy and z as the system
converges to a steady state. In effect the usual

approach of devising a solution to the equations and

then programming the solution is replaced by
programming an iterative solution by directly

simulating the terms of the governing equations and
their connectivity. Table 1 shows the results of the

above iterations along with results from a double

precision FORTRAN program, which agrees to six
significant figures.

3.4 Concurrent computing

To see the concurrent computing capability in the
above application, consider a linear equation with only

one unknown whose iterative solution may be written
as

(Xi_l)2 -1
Xi "- (5)

3

and the corresponding VIVA diagram in Figure 8. The

reduced diagram amounts to one half of the diagram for
the system of two equations as in Eq. (1) shown in

Figure 2 (top left inset) and, yet, the execution time per
iteration for the full system would be the same as for

the reduced system because of the concurrent
processing.

4. Initial Assessment of Experience with Statics and

Dynamics

The next step is the application of a larger number

of degrees of freedom. Figure 9 depicts a system of

two vibrating masses with three springs, three dampers,
and two governing, coupled differential equations. The

corresponding analog computer wiring diagram is
illustrated in Figure 10. A VIVA program based on

3

American Institute of Aeronautics and Astronautics



that diagram is shown in Figure 11 with the program's
output shown in Figure 12. Again, if there were a non-

linearity in the system, for example, the k2 spring

stiffness were proportional to the spring elongation x2-
xl, a simple modification shown by the inset in Figure

10 would implement that non-linearity.
A cantilever beam in Figure 13 provides an

example of a static analysis case with multiple degrees
of freedom. This simple case suggests a conclusion of
general significance. The conclusion is that to use

FPGA's efficiently, one needs to select among the
solution algorithms available, one that affords the

largest degree of inherent parallelism. For the case at

hand, three possible algorithms to choose from are:

1. Forming the Load-Deflection equations
[K]{u} = {P} and solving them by one of the

direct solution methods, e.g., the Cholesky
decomposition algorithm.

2. Solving the Load-Deflection equations by an
iterative method as in Figure 2.

3. Treating the beam as a quasi-dynamic system that

asymptotically tends to a solution corresponding to
the static state.

The above alternative algorithms have the following
merits and demerits.

4.1 Direct solution methods

The direct solution approach is the least

advantageous in FPGA programming because it is a

procedure, which consists mostly of the array

bookkeeping that exploits the [K] matrix sparseness.

Considering that in a large problem, only a few percent
of the [K] matrix entries may be nonzero, the

exploitation of sparseness is a necessity in problems of

any significance because processing of all the elements
including the null ones requires the number of
arithmetical operations that is of order N 3. On the other

hand, that number reduces radically to order Nb 2 if one
exploits a banded structure of the matrix with the

bandwidth b. Exploitation of an irregular sparsity,
measured by S equal to the ratio of the number of the

nonzero elements in the matrix to N 2, generates

comparable or greater reduction. For example, for an

acoustic analysis reported in Reference [8] involving
millions of equations, it was observed that the growth in
the number of arithmetical operations was reduced to
N 4/3 owing to the sparsity of the equation system.

However, that reduction is too problem dependent to be

expressed by a simple formula in terms of N and S.
Elaborate schemes have been created to exploit

efficiently the bandedness or irregular sparsity on single
and multiprocessor computers (Reference [6]). These

schemes although efficient and effective on today's
computers are also complex as they employ
sophisticated bookkeeping and elaborate if-trees to find
a compromise between the minimum of the numerical

labor and the amount of memory required to hold the
intermediate results. This complexity stems from the

phenomenon of the sparse matrix filling-in with

nonzero terms in the direct solution process. The

number of the new, fill-in entries created in the process
of a sparse [K] matrix solution is, typically, of the

order of 10 to 20 times the original number of nonzero
entries.

In general, the filling-in pattern cannot be precisely
predicted but reordering the degrees of freedom and the
associated reshuffling of the rows and columns in the
matrix can mitigate its detrimental effect on both the

amount of numerical labor and memory utilization.

The graphic programming in VIVA does not lend itself

easily to the large, sparse matrix reordering. Even if it
did, that approach would still be unattractive because

the experience shows that when the algorithms based on
that approach are implemented on a multiprocessor
computer, the interprocessor communication time

grows relative to the computing time. The resulting
loss of scalability brings in the law of diminishing

returns that limits the number of processors that may be
used efficiently to well below 100 (Reference [7]). For
these reasons, Alternative 1 does not appear to be the

best choice for an FPGA programmed by a pictorial
language considering the currently available
information.

4.2 Iterative solution methods

An iterative scheme has an obvious advantage of

avoiding the filling-in phenomenon completely. In
principle, one could assign a separate processor to each

equation, or even to each... + a_i*u i ... term in the
equations so that they all would be evaluated

concurrently. That leaves the sparsity intact but does
generate data transfers that consume significant time.

Furthermore, a separate and complete fixed-point
iterative process needs to be converged for each loading

case whose number in practical applications may be in
thousands. Focusing on the positive, one iteration of a

[K] matrix, NxN, with sparseness S requires that the

number of floating point multiplications be proportional
to SN 2 and all of them could be performed in the time

required by a single multiplication if a sufficient
number of processors is available.

On the other hand, if the number of iterations to

convergence is M and the number of loading cases is L,
the total number of multiplications grows to SN2ML

and the total elapsed time to execute them in an ideally

concurrent processing grows in proportion to ML. It
follows that the advantage of the iterative solution in

terms of the elapsed time decreases with the increase of

the product ML and may vanish beyond a certain
critical threshold of that product. The value of M is

problem-dependent but should be expected to be large

because the [K] matrix conditioning that governs M is

4

American Institute of Aeronautics and Astronautics



knowntobepoor.Forexample,Reference[6]citesa
casewithN = 16000 that required M = 50000 for L = 1.

It appears that implementation of an iterative

solution a large system of equations with exploitation of

irregular sparsity is possible on a FPGA using VIVA.

The language supports matrix operations by treating a
matrix as one long vector and keeping track of the
element location indices. Therefore, the foregoing
assessment of the iterative solution, Alternative 2,

implemented on a multiprocessor computer applies to
FPGA as well. Therefore, one should consider
Alternative 2, an iterative solution, as a viable one for

FPGA up to a limit imposed by the product ML.

4.30uasi-dynamic, step-by-step solution method

In Alternative 3, a structure such as the example of
a cantilever beam represented by two finite element

portrayed in Figure 13 is treated as a dynamic system
solved by a step-by-step algorithm in time domain the

same as the one used for the dynamic cases depicted in
Figures 3 and 9. To use that approach, one converts the

structure to a dynamic system by adding inertia and
damping. In case of the beam in Figure 13, that is

accomplished by assuming fictitious mass and moment

of inertia associated with each of the unsupported
degrees of freedom. Similarly, fictitious translational

and rotational dampers are attached to these degrees of
freedom. The magnitudes of the fictitious quantities are

not important, except that for asymptotic convergence
the damping coefficient values should be close to the
critical ones.

The dynamic equation for the system so modified
reads

[M]{ii} + [D]{u} + [K]{u} = {P(t)} (6)

where matrices [M], [D], and [K] represent inertia,
damping, and stiffness.

Using a matrix-vector capability in VIVA the

solution diagram for Eq. (6) shown in Figure 14 looks

the same as one for a single degree of freedom system
except that the matrix operations replace the scalar

ones. When the loading {P(t)} advances in small

increments from zero to {P(t)} in fictitious time the

system converges to the static state of the displacement
and stress under {P(t)}.

Further experimentation is needed to determine

whether the number of increments for {P(t)} does not

have to grow with N for good convergence. If it does

not, then the solution elapsed time would grow only
with the number of loading cases L and Alternative 3

would become better than Alternative 2 up to a limit
governed by L and by the size of the FPGA.

Furthermore, the L limit can also be overcome if

the FPGA is large enough to carry the solution of Eq.
(6) for many loading cases simultaneously. Assuming

that the FPGA hardware capacity develops to that level,
programming the FPGA using Alternative 3 has a

potential for near perfect linear scalability of the
equation solution stage in static and dynamic structural
analysis. As a bonus, this alternative is amenable to the

simple implementation of a non-linearity as illustrated
by inset in Figure 14.

4.4 Computing time for operations other than

solving the load-deflection equations

Regardless of the load-deflection equation solution

method, the total elapsed time of a structural analysis in
any particular case is a sum of the equation solution

time discussed above and the times consumed by the

other stages in the total analysis process:
1. development of a finite element model,
2. assembly of the [K] matrix, and

3. interpretation of results.

The time of stage 1 is primarily the human labor. To

make a radical reduction using an FPGA based system,
the conventional finite element analysis would have to
be rewritten, starting from the very fundamentals and
tailoring the solution to the FPGA architecture.

Regarding stage 3, the FPGA is being used for

visualization of voluminous data in non-engineering

applications, so it is conceivable that it may assist at
that stage. For stage 2, the now-routine technique of
assembling the [K] matrix consists of selective
summing and placing the entries of the elemental

stiffness matrices in the framework of [K]. That
technique does not lend itself to efficient

implementation in VIVA for the same reasons that were

previously discussed in conjunction with Alternative 1.

That leaves an option of assembling [K] by the
textbook operation.

[K] = [A] T [kdiag ] [A] (7)

where [A] stands for the 0-1 connectivity matrix and
[k_ag] is the block-diagonal matrix of the unassembled

structure. VIVA supports matrix operations so it could
execute Eq. (7); however, because the matrices

involved are mostly zeros, it would be mandatory to
implement a zero-bypass capability in the VIVA
language.

Eventually, the FPGA capability may prove to be a
strong enough motivator for development of non-

conventional solution methods. One example of such
emerging methods whose intrinsic parallelism makes
them a natural match for FPGA is the cellular automata

method that has been demonstrated effective in

structural analysis (Reference [9]) and in both analysis
and optimization in Reference [ 10].

The pictorial programming in VIVA has the

obvious advantage of being very intuitive. In computer
science community, there is no consensus whether that
advantage can be sustained when the volume of detail

5

American Institute of Aeronautics and Astronautics



tobeseenbeginstoexceedofwhatasinglescreenmay
display.Theauthorsexperiencetodatereinforcedwith
thegrowinguseofgraphicalsystemssuchasReference
[4],indicatesthattheabilitytocollapseasinglescreen
diagramintoasingleicontobeusedasabuilding
blockinanotherscreeniseffectiveinkeepingthe
visualcodecomplexityundercontrol.It isroughly
equivalenttothegenerallyacceptedgoodpractice
principleofstructuredprogrammingtokeepa
subroutinelengthtoonepage.

5. Concluding Remarks

Initial exploratory experience to date with a

particular FPGA system, the VIVA/HAL-30

software/hardware combination, has been reported and
its merits and demerits assessed. Tentatively, on the

negative side one should point to the lack of

informative error messages, an effective debugger, and
absence of textual or graphic output rendering to a disk.
Considering that this FPGA technology is now in its

infancy, one may expect that these shortcomings will be
addressed as the VIVA product matures. On the

positive side, the FPGA hardware/software system fully
exploits the solution algorithm's inherent parallelism,

and no engineering time needs to be spent on devising
solutions to the governing equations. The problems of

scaling, precision, and stability faced by the analog

computer user in the past are absent owing to the digital
accuracy and repeatability. However, the careful

choice of the time step in dynamic applications to stay
within the problem's time scale is still required.

The analog programming style realizes best the

FPGA potential in structural analysis. It offers a

potential to reduce the equation solving elapsed time,
and an easy way to implement non-linearities.

Extension of the FPGA utility to all the phases of a
complete structural analysis process, will require
redevelopment from the ground up tailored to the
FPGA architecture.

There is no doubt that computing technology has
embarked on a path of inherent parallelism in

processing that in due course will likely supplant many
of the engineering physics solutions that were

developed in the past for the single processor,

sequential computing. The FPGA-based system is one
type of a computer on that path, and the methods

tailored to its architecture now will grow in their

effectiveness as the FPGA technology develops. The
first exploratory step reported herein has but scratched

the surface of the potential for this class of computers
and solution methods.

6. References

1. HANDEL-C at www.celoxica.com

2. VIVA at www.starbridgesystems.com and are
marks of Star Bridge Systems, Copyright 1998-

2001 by Star Bridge Systems, Inc.
3. HAL-15 at www.starbridgesystems.com and are

marks of Star Bridge Systems, Copyright 1998-
2001 by Star Bridge Systems, Inc.

4. SIMULINK at www.mathworks.com

5. Michael G. Rekoff, Jr., Analog Computer
Programming, Charles E. Merrill Books, Inc,
Columbus, Ohio, 1967.

6. Nguyen, D. T.: Parallel-vector Equation Solvers for
Finite Element Engineering Applications; Kluwer
Academic Publ., 2002.

7. Storaasli, O.O.; Nguyen, D.T.; Baddourah, M.A.;

and Qin, J.: Computational Mechanics Analysis

Tools for Parallel Vector Supercomputers;
Computing Systems in Engineering, Vol.4, N0:4-6,
pp.349-354, Elsevier Publ. 1993.

8. Watson, W.R.; and Storaasli, O.O.: Application of

NASA general purpose solver to large-scale
computations in aeroacoustics; Advances in

Engineering Software, No.31, pp.555-561.
Kim, P.; and Hajela, P.: Elastic Element Based

Cellular Automata Models in Structural Design; 4 th
World Congress on Structural and

Multidisciplinary Optimization, Dalian, China,
June 2001.

10. Abdalla, M.; and Gurdal, Z.: Structural Design

Using Optimality Based Cellular Automata; Paper
AIAA-2002-1676; 43 rd AIAA Structures,

Dynamics, and Materials Conference; Denver, CO,
April 2002.

,

Table 1: Results of Fixed Point Iterations with Zo=3, Yo=2, a=P=l, b=d=0.5, M=0.0001

FORTRAN

(double " " - 10 -13)

Y= Z=

1.3332667 -0.66653333

1.1553033 -0.57755163

VIVA K
(non-lineari:

Iterations y= Z=

47 1.333267 -0.6665334

69 1.155303 -0.5775517

6

American Institute of Aeronautics and Astronautics



a sau,ared

Figure 1: Viva Algorithm to Calculate f(a) = a2
(Features left not explained are internal VIVA

housekeeping details beyond the scope of this

report)

!i!_iii!Z:ii!!::ii_i!iii!iiiiii:!i:!iii!:

C

k

1 [cY_+ kx + f(t)]
m

Figure 3: Frictionless Mass and Spring with Damper

7

American Institute of Aeronautics and Astronautics



d2 dt2 X

multiplier (amplifier)

f(t)

integrator adder

-critical damping coefficient; (,On - natural vibration circular
frequency;

Figure 4: Analog Computer Diagram corresponding to the System in Figure 3; It is Directly Translatable into
the Viva Algorithm in Figure 5

:_i_-_;&,; - -- -:_i-. ...... = _" -_:i::E_::_i::._i_ • : ..::.::.::.:::._._...................

15 Xo = V o = to = 0

dt = 0.125 -- Position I

Step in first dt -- Velocity IImpluse = 125.0

i iil ;i': :i:!! :i !"'.::i 10 _k- ...... Damplng=O.5 ....................................... -- A_cceleration ......

= .

Arbitrary

0

-lO

: i:/iii:i/:i :i !.

Figure 5: Viva Algorithm to Solve the Mass and

Spring with Dampers from Figure 3

0 2 4 6 8 10
Time

Figure 6: Plotted Output from the Viva Algorithm
in Figure 5

8

American Institute of Aeronautics and Astronautics



!i:!ii%iiii!ii

i!iii!:i!!!ii!:_i

Figure 7: Viva Algorithm to Solve Equation (4) Via

the Fixed Point Algorithm with a Non-linearity

X

Figure 8: Viva Algorithm to Solve Equation (5) Via

the Fixed Point Algorithm for One Degree of
Freedom

C 1 C2 C3

k

1

m 1

1

m 2

[C2X 2 -_- k2x 2

[C2X 1 "_" k2x 1

k2 k3

-- (C1 -_- C2)X 1

-- (C2 -[- C3)'X 2

-(k 1 + k2)Xl]

-- (k2 + k3)x2]

Figure 9: Two Masses Connected by Three Springs with Three Dampers on a Frictionless Surface

9

American Institute of Aeronautics and Astronautics



.f(t)

1/(ml)

w'!

c2

> J

1/(m2)

Figure 10: Analog Equivalent Wiring Diagram to Solve System in Figure 9

_w
_' H o4

=_ _, _ /

_ I__:

Figure 11: Viva Algorithm to Implement Figure 10

10

American Institute of Aeronautics and Astronautics



Velocity
Position

M1 Position RK
M1 Position VIVA
MI Velocity RK
M1 Velocity VIVA
M2 Position RK

• M2 Position

M2 Velocity RK
• M2 Velocity

-2

0 1 2 3 4 5

Time (sec)

Figure 12: VIVA and Runga-Kutta (MathCAD 2000) Output for the Model in Figure 9

u2 u5
t

u4

Figure 13: A Cantilever Beam Represented By A Finite Element Model Of Two Elements; u - displacements
of the structure assembled and supported; displacements of unassembled structure left not labeled.

[ _[-['--..>{u,*}_l-[-...._ {u} ._r_....

[D'] = [Inl-_[Dl;[K'] = [Inl-_[K]; _ P(t)

..... (u} ..!""-..

[K'o] _---*"[_'--
b _[K] + b [K'o]

Figure 14: Analog Solution Diagram For A Structure With N Degrees Of Freedom. Inset Shows a

Modification To Simulate a Non-Linear Case In Which Stiffness [K] Depends On Displacement u

11

American Institute of Aeronautics and Astronautics


